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Poroelastic Analysis of Thomsen Parameters in Finely Layered VTI Media 
J a m e s  G. Berryman,  University of California, Lawrence Livermore National  Laboratory 

Summary 

Thomsen’s anisotropy parameters for weak elastic and 
poroelastic anisotropy are now commonly used in explo- 
ration, and can be conveniently expressed in terms of the 
layer averages of Backus. Although there are five effective 
shear moduli for any layered VTI medium, only one 
effective shear modulus for the layered system contains all 
the dependence of pore fluids on the elastic or poroelastic 
constants that can be observed in vertically polarized 
shear waves in VTI media. The effects of the pore 
fluids on this effective shear modulus can be substantial 
when the medium behaves in an undrained fashion, as 
might be expected at higher frequencies such a sonic and 
ultrasonic for well-logging or laboratory experiments, or 
at  seismic frequencies for lower permeability regions of 
reservoirs. 

Introduction 

Gassmann’s fluid substitution formulas for bulk and shear 
moduli (Gassmann, 1951) were originally derived for 
the quasi-static mechanical behavior of fluid saturated 
rocks. It has been shown recently (Berryman and Wang, 
2001) that it is possible to understand deviations from 
Gassmann’s results at higher frequencies when the rock 
is heterogeneous, and in particular when the rock het- 
erogeneity anywhere is locally anisotropic. On the other 
hand, a well-known way of generating anisotropy in the 
earth is through fine layering. Then, Backus’ averaging 
(Backus, 1962) of the mechanical behavior of the lay- 
ered isotropic media at the microscopic level produces 
anisotropic mechanical behavior at the macroscopic level. 
The Backus averaging concept can also be applied to fluid- 
saturated porous media, and thereby permits us to study 
how deviations from Gassmann’s predictions could arise 
in an elementary fashion. We consider both closed-pore 
and open-pore boundary conditions between layers within 
this model. 
We review some standard results concerning layered VTI 
media in the first section. Then, we discuss singular value 
composition of the elastic (or poroelastic) stiffness matrix 
in order to introduce the interpretation of one shear mod- 
ulus (out of the five shear moduli present) that has been 
shown recently (Berryman, 2003) to contain all the im- 
portant behavior introduced by the pore fluid into the 
shear deformation response. These results are also then 
related to Thomsen parameters for weak anisotropy. For 
purposes of analysis, expressions are derived for the quasi- 
compressional- and quasi-SV-wave speeds. Numerical ex- 
amples show that the analysis presented is completely 
consistent with the full theory for layered media. 

Notation for elastic and poroelastic VTI media 

Elastic and poroelastic notation 

We begin by establishing some notation needed in the 
remainder of the paper. For transversely isotropic me- 
dia with vertical symmetry axis, the relationship between 
components of stress mlj  and strain ek l  is given by 

a b f  [ u;)=[ b a f  21 21 ] [i)> (1) 

0 1 2  2 m  

where a = b + 2 m ,  and e k l  = i ( U k , l  + U l , k )  with u k  being 
the displacement in direction I C .  

Definitions of the Thomsen (1986) parameters E ,  6, and y 
are now well-known. The stiffnesses in (1) are given either 
exactly or approximately by the relations a = c ( l  + 2 ~ ) ,  
m = l(1 + 2y), and f N c(l  + 6) - 21. For P-wave 
propagation in the earth near the vertical, the important 
anisotropy parameter is 6. For SV-wave propagation near 
the vertical, the combination ( E  - 6) plays essentially the 
same role as 6 does for P-waves. For SH-waves, the perti- 
nent anisotropy parameter is y. All three of the Thomsen 
parameters vanish for an isotropic medium. 

In TI  media, c and 1 are the velocities normal to the layer- 
ing. Then, E ,  y, and 6 measure the deviations from these 
normal velocities at other angles. We present some of the 
relevant details of the phase velocity analysis later. 

Gassmann results for isotropic poroelastic media 

To understand the significance of the results to follow, we 
briefly review some well-known results due to Gassmann 
(1951). Gassmann’s first equation relates the bulk mod- 
ulus K* of a saturated isotropic porous medium to the 
bulk modulus Kdr of the same medium in the drained 
case: K’ = & , / ( I  -aB),  where the parameters Q and B 
[respectively, the Biot-Willis parameter (Biot and Willis, 
1957) and Skempton’s pore-pressure buildup coefficient 
(Skempton, 1954)] depend on the porous medium and 
fluid compliances. For the shear moduli of the drained 
( p d r )  and saturated (p ’ )  media, Gassmann’s quasi-static 
theory gives p* = p d r .  Note that the fluid effect is all 
contained in the parameter A‘ = K’ - $ p * ,  where X and 
,u are the well-known Lam6 parameters. 
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Backus averaging 

Backus (1962) presented an elegant method of produc- 
ing the effective constants for a thinly layered medium 
composed of either isotropic or anisotropic elastic layers. 
This method applies either to spatially periodic layering 
or to random layering. For simplicity, we assume that the 
physical properties of the individual layers are isotropic, 
in which case the coefficients in equation (1) take the val- 
ues a = c = X + 2p, b = f = A, and 21 = 2m = 2p for 
each individual layer. The key idea presented by Backus is 
that these equations can be rearranged into a form where 
rapidly varying coefficients multiply slowly varying (really 
constant) stresses or strains. 
The derivation has been given many places including 
Schoenberg and Muir (1989). Using brackets (z} to in- 
dicate the volume (or equivalaently the one-dimensional 
layer) average of the quantity z in the simple layered 
medium under consideration, the anisotropy coefficients 
in equation (1) are related to the layer parameters by 
the following expressions: c = (&)-I,  f = c ( & ) ,  

1 = (:)-I, m = ( p ) ,  a = < + 4m - 4 (A), and b = 
a - 2m. When the layering is fully periodic, these results 
may be attributed to Postma (1955), while for more gen- 
eral layered media including random media they should 
be attributed to Backus (1962). 
Recall that these equations reduce (Backus, 1962) to 
isotropic results with a = c ,  b = f ,  and 1 = m, if the 
layer shear modulus is a constant (= p) ,  regardless of the 
behavior of A. 

Singular value decomposition 

The singular value decomposition (SVD), or equivalently 
the eigenvalue decomposition in the case of a real sym- 
metric matrix, for (1) is relatively easy to perform. We 
can immediately write down four eigenvectors: 

0 [ r ) ,  [ 0 i ) ,  ( E ) ?  1 

and their corresponding eigenvalues, respectively 21, 21, 
2m, and a-b = 2m. All four correspond to shear modes of 
the system. The two remaining eigenvectors must be or- 
thogonal to all four of these and therefore both must have 
the general form (1,1,  X ,  O,O,  O ) T ,  with the corresponding 
eigenvalue x = a + b + f X .  The remaining condition that 
determines both X and x is X X  = 2f + c X ,  which, after 
substitution for x ,  leads to a quadratic equation having 
the solutions 

The ranges of values for X* are 0 5 X+ 5 00 and, since 
X -  = -2/X+, --03 5 X -  5 0. The interpretation of 
the solutions X* is simple for the isotropic limit where 
X +  = 1 and X -  = - 2 ,  corresponding respectively to 
pure compression and pure shear modes. For all other 
cases, these two modes have mixed character, indicat- 
ing that pure compression cannot be excited in the sys- 
tem.The pertinent functional F ( z )  = 3 [-z + 4-1 
is easily shown to be a monotonic function of its argument 
x. So it is sufficient to study the behavior of the argu- 
ment z = ( a + b - c ) / f .  Space limitations preclude further 
discussion of this here, but it is straightforward to do the 
analysis and the main result is that the shear modulus 
fluctuations giving rise to the anisotropy due to layering 
are (as expected) the main source of deviations of z from 
unity. There are both linear and quadratic contributions 
from these fluctuations. 
Carrying this analysis forward and using a shear energy 
criterion, Berryman (2003) shows, furthermore, that 

G,f f  ( a  + c - m - 2f)/3 (4) 

is the fifth shear modulus of interest in VTI media, and 
the only one that can contain effects of fluids in undrained 
poroelastic media via X + A'. 

Dispersion relations for seismic waves 

The general behavior of seismic waves in anisotropic me- 
dia is well known, and the equations are derived in many 
places including Berryman (1979) and Thomsen (1986). 
The results are 

f J[ (a - Z)k; - (c  - l)k:I2 + 4(f + 1)2k:k:} , (5) 

for compressional (+) and vertically polarized shear (-) 
waves and 

for horizontally polarized shear waves, where p is the over- 
all density, w is the angular frequency, kl and ks are 
the horizontal and vertical wavenumbers (respectively), 
and the velocities are given simply by v = w / k  with 
k = Jm. The SH wave depends only on elastic 
parameters 1 and m, which are not dependent in any way 
on layer X and therefore will play no role in the poroelastic 
analysis. Thus, we can safely ignore SH-waves here. 
Note that 

pwi + pw? = (u + 1)k: + ( c  + l )k: ,  (7) 

So we can make the identifications 

pw: E ak: + ck; - A and pw? G lk2 + A,  (8) 
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Constituent K (GPa) 

1 9.4541 

2 14.7926 

3 43.5854 

with A still to be determined. Then, we find that 

,u (GPa) z (m/m) 

0.0965 0.477 

4.0290 0.276 

8.7785 0.247 
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Elastic Parameters 

and Density 

Cas e 

B=O 

33.8345 

33.1948 

22.2062 

4.0138 

6.7777 

5.2797 

-0.0847 

0.0943 

0.3443 

2120.0 

Case 

B = L  

50.3523 

50.4715 

38.5857 

4.0138 

6.7777 

5.8841 

-0.0733 

0.0745 

0.3443 

2310.0 

Case 

B = l  

132.7003 

134.2036 

120.7006 

4.0138 

6.7777 

6.2417 

-0.0399 

0.0343 

0.3443 

2320.0 

6.51 \ 
I 

- - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - -  
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Fig. 1: Compressional wave speed V,, as a function of angle 
0 from the vertical. Two curves shown correspond to choices of 
Skempton’s coefficient B = 0 for the drained case (dashed line 
and B = 1 for the undrained case (solid line). The case B = 5 
(dot-dash line) is used to model partial saturation conditions as 
described in the text. The Biot-Willis parameter was chosen to be 
a = 0.8, constant in all layers. 
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Computed Examples 

From previous work (Berryman, 2003), we know that 
large fluctuations in the layer shear moduli are required 
before significant deviations from Gassmann’s quasi-static 
constant result showing that the shear modulus is inde- 
pendent of fluid properties will become noticeable. To 
generate a model that demonstrates these results, I made 
use of a code of V. Grechka [used previously in a joint 
publication (Berryman et al., 1999)] and then I arbitrar- 
ily picked one of the models that  seemed to be most in- 
teresting for the present purposes. The parameters of 
this model are displayed in TABLE 1. The results for the 
various elastic coefficients and Thomsen parameters are 
displayed in TABLE 2. The results of the calculations for 
V, and V,, are shown in Figures 1 and 2. 
The model calculations were simplified in one way: the 
value of the Biot-Willis parameter was chosen to be a uni- 
form value of a = 0.8 in all layers. We could have actually 
computed a value of a from the other layer parameters, 
but to do so would require another assumption about the 
porosity values in each layer. Doing this seemed an exer- 
cise of little value because we are just trying t o  show in a 
simple way that the formulas given here really do produce 
the types of results predicted and to get a feeling for the 
magnitude of the effects. Furthermore, if a is a constant, 
then it is only the product aB that matters. Whatever 
choice of constant a 5 1 is made, it mainly determines 
the maximum value of the product aB for B in the range 
[0,1]. So, for a parameter study, it is only important not 
to choose too a small value of a,  which is why the choice 
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Fig. 2: Vertically polarized shear wave speed V,,, as a func- 
tion of angle 0 from the vertical. Two curves shown correspond 
to choices of Skempton’s coefficient B = 0 for the drained case 
(dashed line) and B = 1 for the undrained case (solid). The case 
B = f (dot-dash line) is used to model partial saturation con- 
ditions as described in the text. The Biot-Willis parameter was 
chosen to be (Y = 0.8, constant in all layers. 

0: = 0.8 was made. This means that the maximum am- 
plification of the bulk modulus due to fluid effects can be 
as high as a factor of 5 for the present examples. 

We took the porosity to be q5 = 0.2, and the overall den- 
sity to be p = (1-q5)ps+q5Spl, where pa = 2650.0 kg/m3, 
S is liquid saturation (0 5 S 5 l), and pl = 1000.0 
kg/m3. Then, three cases were considered: (1) Liquid 
saturation S = 0 and B = 0, which is the drained case, 
assuming that the effect of the saturating gas on the 
moduli is negligible. (2) Liquid saturation S = 1 and 
B = 1, which is the fully undrained case, assuming that 
a fully saturating liquid has the maximum possible stiff- 
ening effect on the locally microhomogeneous, poroelastic 
medium. And (3) liquid saturation S = 0.95 and B = f ,  
which is intended to model a case of partial liquid sat- 
uration, intermediate between the other two cases. For 
smaller values of liquid saturation, the effect of the liq- 
uid might not be noticeable, since the gas-liquid mixture 
when homogeneously mixed will act much like the pure 
gas in compression, although the density effect is still 
present. When the liquid fills most of the pore-space, and 
the gas occupies less than about 3% of the entire volume 
of the rock, the gas starts to become disconnected, and we 
expect the effect the liquid to start becoming more notice- 
able, and therefore we choose B = f to be representative 
of this case. 

Conclusions 

One of our main results is that, although there are five ef- 
fective shear moduli for any layered VTI medium, there is 
the one and only one effective shear modulus G,f f  for the 

layered system that contains all the dependence of pore 
fluids on the elastic or poroelastic constants that can be 
observed in vertically polarized shear waves in VTI media. 
The pore-fluid effects on this effective shear modulus can 
be substantial when the medium behaves in an undrained 
fashion, as might be expected at higher frequencies such a 
sonic and ultrasonic for well-logging or laboratory exper- 
iments, or at seismic frequencies for lower permeability 
regions of reservoirs. These results are clearly illustrated 
in Figure 2. 
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